Exercice 6
Question
Écrire sous la forme \(a\sqrt{b}\) où a et b sont des nombres entiers strictement positifs, b étant le plus petit possible :
\(\sqrt{50}\)
\(\sqrt{200}\)
\(\sqrt{147}\)
\(\sqrt{54}\)
Solution
Question 1
\(\sqrt{50} = \sqrt{25 \times 2} = \sqrt{5^2 \times 2} = \sqrt{5^2} \times \sqrt{2} = \color{red}5\sqrt{2}\)
Question 2
\(\sqrt{200} = \sqrt{100 \times 2} = \sqrt{10^2 \times 2} = \sqrt{10^2} \times \sqrt{2} = \color{red}10\sqrt{2}\)
Question 3
\(\sqrt{147} = \sqrt{49 \times 3} = \sqrt{7^2 \times 3} = \sqrt{7^2} \times \sqrt{3} = \color{red}7\sqrt{3}\)
Question 4
\(\sqrt{54} = \sqrt{9 \times 6} = \sqrt{3^2 \times 6} = \sqrt{3^2} \times \sqrt{6} = \color{red}3\sqrt{6}\)