Exercice 1
Question
Effectuer les calculs suivants :
\(\sqrt {4}\)
\(\sqrt {(-6)^2}\)
\(\left(\sqrt {11}~\right)^2\)
\(\sqrt {5^4}\)
Indice
Bien regarder la place de la puissance par rapport à la racine carrée.
Solution
Question 1
\(\sqrt {4} = \sqrt{2 \times 2} = \sqrt{2^2}= \color{red}2\)
Question 2
\(\sqrt {(-6)^2} = \sqrt{(-6)\times (-6)} = \sqrt{36} = \sqrt{6^2} = \color{red}6\)
Question 3
\(\left(\sqrt {11}~\right)^2 = \color{red}11\)
Question 4
Deux chemins de résolution :
\(\sqrt {5^4} = \sqrt{5 \times 5 \times 5 \times 5} = \sqrt{5^2 \times 5^2} = \sqrt{(5^2)^2} = 5^2 = \color{red}25\)
\(\sqrt {5^4} = \sqrt{5 \times 5 \times 5 \times 5} = \sqrt{5^2 \times 5^2} = \sqrt{5^2} \times \sqrt{5^2} = 5 \times 5 = \color{red}25\)