Probabilités conditionnelles - Ex3

Question

Solution

Question 1

\(\mathrm P_B(A)=\mathrm P_{\left\{2 ;4 ;6\right\}}\left(\left\{4 ;5 ;6\right\}\right)=\dfrac{\mathrm P\left(\left\{2 ;4 ;6\right\}\cap\left\{4 ;5 ;6\right\}\right)}{\mathrm P\left(\left\{2 ;4 ;6\right\}\right)}=\dfrac{\mathrm P\left(\left\{4 ;6\right\}\right)}{\mathrm P\left(\left\{2 ;4 ;6\right\}\right)}=\dfrac{\,\frac26\,}{\frac36}=\dfrac26\times\dfrac63\,\boxed{\color{red}=\frac23}\)

Question 2

\(\mathrm P_A(B)=\mathrm P_{\left\{4 ;5 ;6\right\}}\left(\left\{2 ;4 ;6\right\}\right)=\dfrac{\mathrm P\left(\left\{4 ;5 ;6\right\}\cap\left\{2 ;4 ;6\right\}\right)}{\mathrm P\left(\left\{4 ;5 ;6\right\}\right)}=\dfrac{\mathrm P\left(\left\{4 ;6\right\}\right)}{\mathrm P\left(\left\{4 ;5 ;6\right\}\right)}=\dfrac{\,\frac26\,}{\frac36}=\dfrac26\times\dfrac63\,\boxed{\color{red}=\frac23}\)

Question 3
  • \(\left(A\cap B\right)\subset\left(A\cup B\right)\) donc \(\color{blue}\left(A\cap B\right)\cap\left(A\cup B\right)=\left(A\cap B\right)\)

\(\mathrm P_{\left(A\cap B\right)}\left(A\cup B\right)=\dfrac{\mathrm P\left(\left(A\cap B\right)\cap\left(A\cup B\right)\right)}{\mathrm P\left(A\cap B\right)}=\dfrac{\mathrm P\left(A\cap B\right)}{\mathrm P\left(A\cap B\right)}\,\boxed{\color{red}=1}\)